

HYSTEROSCOPY

maxerendoscopy.com

ISO Certificate

Quality management system as per ISO 13485 :2012 Medical Device Certification for development & Production & Endoscopic instrument & Equipments

CE Certificate

As per council directive 93/42/EEC Concerning medical devices

About Maxer

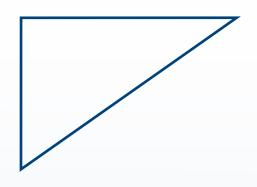
Maxer Medizintechnik GmbH has established itself as a symbol of creativity and latest technology and is an internationally qualified supplier of world class medical instruments and devices.

Specialized in the field of Minimal Invasive Surgery, Maxer manufactures wide range of equipments such as Laparoscopy, Hysteroscopy, Urology, Pediatric Surgery, Arthroscopy, Spine Endoscopy, ENT, etc.

Maxer has been one of the foremost companies to bring out HD technology in MIS field. In 2004, Maxer brought out first endoscopy camera with Matrix Metering. In 2008, Maxer brought out HD Telescopes. In 2009, Maxer launched first Networked Endoscopy Camera System. In 2010, Maxer introduced pathbreaking 16 Fr Resectoscope for Office Hysteroscopy. In 2011, Maxer launched LED Headlight with 200,000 Lux illumination, again a state of art in this segment. In 2012, Maxer launched LED Light sources to keep Maxer customers always at the cutting edge of technology. Maxer has also launched HD cameras with integrated Full HD recording. 3 CMOS HD cameras with 6 megapixel camera head will be launched soon.

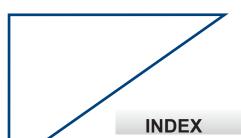
Owners of Maxer have been working in Medical market for more than 20 years and have installed thousands of sets with high level of customer satisfaction. This background has given Maxer profound credibility in the field of endoscopy.

Due to vibrant co-operation with end users, Maxer is able to continuously improve upon the product range and also able to meet special modification demands. Maxer believes that growth and innovation go hand-in-hand.

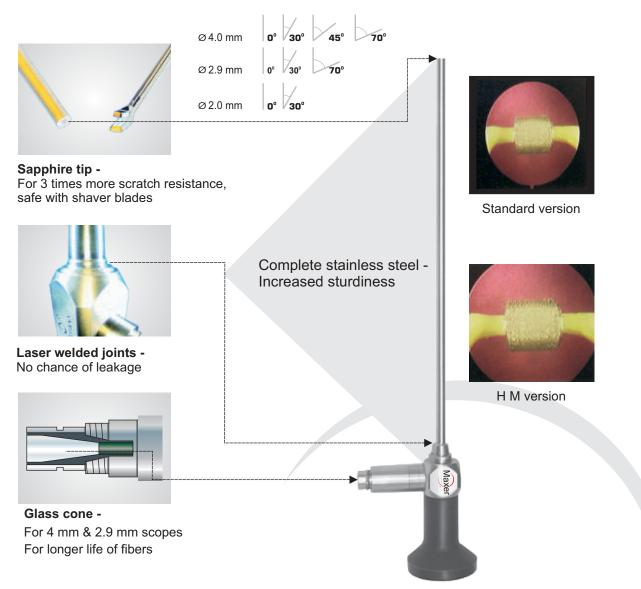


Maxer sells complete system with a focus on product quality and customers satisfaction. Maxer provides sales and service training to it's distributor in order to be successful.

Maxer believes that sound ethics with professionalism will only give success to the company. Maxer's growth and success are based on long term partnerships with customers, distributors. Maxer currently exports it's products to Europe, Asia, Africa.


Maxer is headed by Mr. Giovanni Miranda in the capacity as a Managing Director.

How to reach to Maxer - Maxer is located in Wurmlingen (sales office) within the medical instruments manufacturing region around Tuttlingen in South Germany. Maxer also has registered office at Spaichingen.



4 mm Hysteroscopes and Information	H - 4 to 5
Diagnostic Sheaths	H - 6
Continuous Flow Operating Sheaths	H - 7
Flexible Instruments	H - 8 to 9
Flexible Monopolar and Bipolar Electrodes	H - 10 to 11
Resectoscope Monopolar and Accessories for 4 mm scope	H - 12 to 17
Resectoscope Bipolar and Accessories for 4 mm scope	H - 18 to 21
Mini Hysteroscopy Monopolar and Accessories for 2.9 mm scope	H - 22 to 27
Diagnostic Sheaths for Mini Hysteroscopy	H - 28
Continuous Flow Operating Sheaths for Mini Hysteroscopy	H - 29 to 30
Thin Resectoscope and Accessories	H - 31 to 32
Mini Hysteroscope and Accessories for 2 mm scope	H - 33 to 35
Accessories	H - 36

Hysteroscopes from Maxer, Germany

Maxer has been setting innovative standards for many years. Maxer produces laser welded endoscopes which can withstand numerous autoclaving cycles. Its glass cone technology is also unique. Maxer endoscopes are known worldwide for third generation scopes which give high resolution & brightness all over the image. New High Definition Hysteroscopes are developed with better optical clarity & depth of focus.

- · High Definition Hysteroscope have better scopes to give enhanced clarity
- High quality, multi coated (anti-reflective) optical system
- · Highly refractive glass for optimal color rendering even when the image is magnified
- Extremely precise centering of the optical & mechanical components for an image that is brilliant
 & high contrast even around the edges
- Triple tube design for higher stability with many types of endoscopes
- Nitrogen filled optical system to avoid interior condensation
- · High resolution scopes, Sapphire cover glass on both ends,
- Glass cone to collect light from F. O. Cable, Autoclavable

Hysteroscope Ø 4.0 mm

HM Version 4 mm

0° HM	12° HM	30° HM	70° HM	Ø mm	Working length
15.10.4100	15.10.4112	15.10.4130	15.10.4170	4.0	300 mm

HM HD Version 4 mm

0° HM HE) 1:	2° HM HD	30° HM HD	70° HM HD	Ø mm	Working length
15.10.460	0 1	5.10.4612	15.10.4630	15.10.4670	4.0	300 mm

HM = High Magnification offers magnified image for the same working area

HD = High Definition scopes offer better optical clarity, brightness & depth of focus

Diagnostic Sheaths

For 4 mm Hysteroscope

Inner sheaths with 1 rigid stopcock

Art. No.	Outside Diameter	Working Length	for telescopes Ø 4.0 mm	
25.31.4011	5.4 mm	260 mm	0° 300 mm	
25.31.4012	5.4 mm	260 mm	30°	300 mm

Outer sheath for continuous flow with 1 rigid stopcock

Art. No.	Outside Diameter	Working Length	for telescopes Ø 4.0 mm	
25.31.4010	6.5 mm	240 mm	0°, 30°	300 mm

Single flow diagnostic sheath with rotating stopcock

fundamiaadamilaa

25.31.401	4	5.0 mm	270 mm	30°	300 mm
25.31.401	5	5.0 mm	270 mm	O°	300 mm

Obturator

25.31.4013	Obturator for Diagnostic sheath 25.31.4011 & 25.31.4012, 25.31.4014 & 25.31.4015

Continuous Flow Operating Sheaths

For 4 mm Hysteroscope

Rotatable sheath, 2 stopcocks, 1 instrument channel 7 CH & separate irrigation channel

Art. No.	Outside Diameter	Working Length	For Telescopes Ø 4.0 mm		
25.41.4021	8.0 mm	200 mm	0° 300 mm		
25.41.4022	8.0 mm	200 mm	30°	300 mm	

25.43.4021EL	Operating Sheaths, outer sheath Ø 7 mm, WL 192 mm with one stopcock for telescope 30°
25.43.4023EL	Inner sheath with channel for semi rigid 7 CH instruments with one stop cock
25.43.4022EL	Operating Sheaths, outer sheath Ø 6.5, WL 192 mm with one stopcock for telescope 30°
25.43.4024EL	Inner sheath with channel for semi rigid 5 CH instruments with one stop cock

Flexible Instruments

Biopsy Forceps, oval spoon, double action

Flexible	Flexible / Insulated	Semi Rigid	WL	Ø mm	СН
25.46.1005		25.46.3005	40 cm	1.6	5 CH
25.46.1006	25.46.2006	25.46.3006	40 cm	2.1	6 CH
25.46.1007	25.46.2007	25.46.3007	40 cm	2.3	7 CH
25.46.1009	25.46.2009	25.46.3009	40 cm	3.0	9 CH

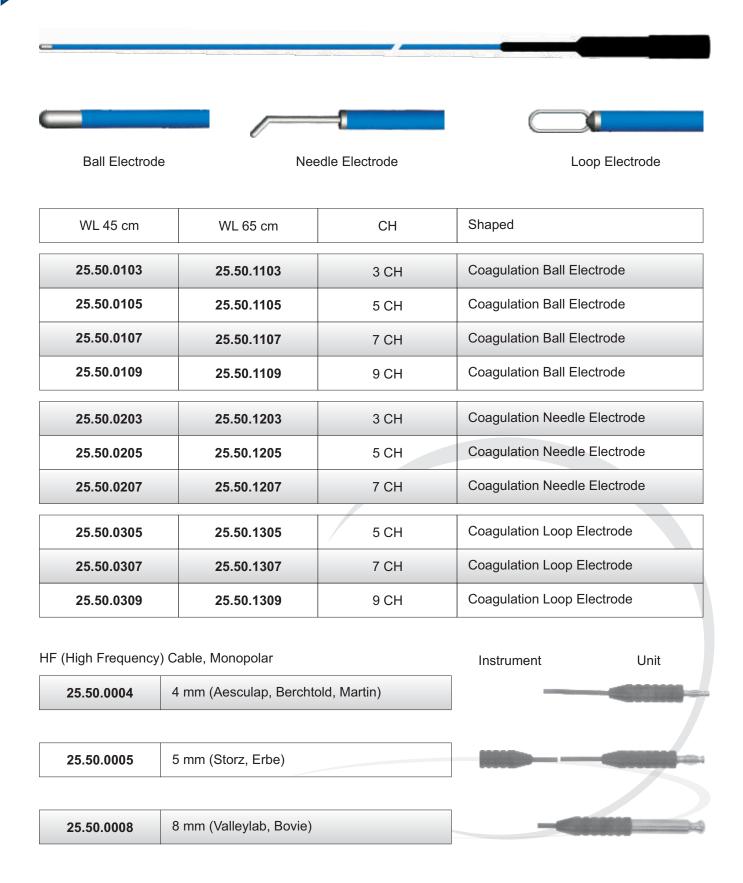
Biopsy Forceps, oval spoon, serrated, double action

Flexible	Flexible / Insulated	Semi Rigid	WL	Ø mm	СН
25.47.1005		25.47.3005	40 cm	1.6	5 CH
25.47.1006	25.47.2006	25.47.3006	40 cm	2.1	6 CH
25.47.1007	25.47.2007	25.47.3007	40 cm	2.3	7 CH
25.47.1009	25.47.2009	25.47.3009	40 cm	3.0	9 CH

Flexible Instruments

Grasping Forceps, Alligator jaw, double action

Flexible	Flexible / Insulated	Semi Rigid	WL	Ø mm	Ø CH
25.48.1003			40 cm	1.4	4 CH
25.48.1005		25.48.3005	40 cm	1.6	5 CH
25.48.1007	25.48.2007	25.48.3007	40 cm	2.3	7 CH
25.48.1009	25.48.2009	25.48.3009	40 cm	3.0	9 CH


Scissors, single action

Flexible	Flexible / Insulated	Semi Rigid	WL	Ø mm	Ø CH
25.49.1005		25.49.3005	40 cm	1.6	5 CH
25.49.1006	25.49.2006	25.49.3006	40 cm	2.1	6 CH
25.49.1007	25.49.2007	25.49.3007	40 cm	2.3	7 CH
25.49.1009	25.49.2009	25.49.3009	40 cm	3.0	9 CH

Flexible Monopolar Electrodes

Coagulation Electrode

Flexible Bipolar Electrodes

25.60.5055 Button Electrode, Flexible, Bipolar 5 CH, WL 360 mm

25.60.5060 Needle Electrode, Flexible, Bipolar 5 CH, WL 360 mm

25.60.5065 Needle Electrode Curved, Flexible, Bipolar 5 CH, WL 360 mm

Myoma Fixation Instrument

25.50.0533 5 CH, WL 34 cm

HF (High Frequency) Cable, Bipolar

Instruments B

Bipolar-Units

20.67.2003 Length 3 mm, Flat plug (Erbe/Wisap/Storz)

20.67.2103

Length 3 mm, Flat plug (GIMMI / Martin / Berchtold)

20.67.2203

Length 3 mm, Flat plug (Valleylab)

Resectoscope & Accessories

For 4 mm Hysteroscope



- Easy locking sheaths for secure connections
- Ergonomic design
- Sturdy spring construction
- German Craftsmanship
- Wide range of accessories

Resectoscope Sheaths

For continuous irrigation

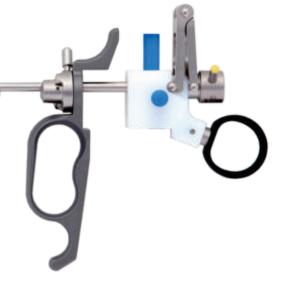
Resectoscope sheath for continuous irrigation

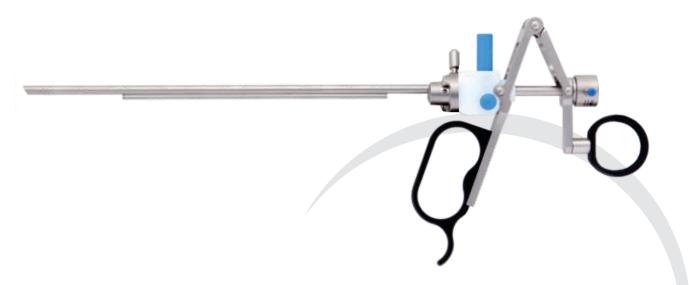
For 4 mm Hysteroscope

25.60.0031EL	Resectoscope sheath for continuous irrigation fixed inner sheath, 26/24 CH, with standard obturator, complete
25.60.1031EL	Outer sheath only, 26 CH
25.60.2031EL	Inner sheath with ceramic insulation only 24 CH

25.60.0032EL	Resectoscope sheath for continuous irrigation rotatable, 26/24 CH, with standard obturator, complete
25.60.1032EL	Outer sheath only, 26 CH
25.60.2032EL	Inner sheath with ceramic insulation only 24 CH

25.60.0035EL	Resectoscope sheath for continuous irrigation, rotatable 28.5/27 CH, with standard obturator, complete
25.60.1035EL	Outer sheath only, 28 CH
25.60.2035EL	Inner sheath with ceramic insulation only 27 CH


30.51.0024	Standard Obturator for resectoscopy sheath 24 CH
30.51.0027	Standard Obturator for resectoscopy sheath 27 CH


Resectoscope Working Elements - Monopolar

For 4 mm Hysteroscope

For Single Stem Electrodes

25.60.0020 Working element 24/26 CH, passive cutting by spring action closed handle

25.60.0030 Working element 24/26 CH, active cutting by finger action closed handle

25.60.0000	Protection rod for working element	
25.50.0004	Resectoscopy Cable	

Electrodes for Resectoscope - Monopolar

25.60.1024	Roller electrode serrated	Ø 3 mm	24 CH	1	
25.60.2024	Roller electrode serrated	Ø 5 mm	24 CH	1	
25.60.3024	Knife electrode		24 CH		And the desired
25.60.3027	Knife electrode		27 CH		
25.60.4024	Loop electrode, straight		24 CH		
25.60.4027	Loop electrode, straight		27 CH		
25.60.5024	Loop electrode, angled for 30	° scope	24 CH		
25.60.5027	Loop electrode, angled for 30	° scope	27 CH	\	
25.60.6024	Loop electrode, angled, for 0°	scope	24 CH		

Electrodes for Resectoscope - Monopolar

25.60.7024	Vaporization electrode	Ø 3 mm	24 CH	
25.60.7124	Vaporization electrode	Ø 5 mm	24 CH	
25.60.7027	Vaporization electrode	Ø 3 mm	27 CH	
				-
				7
25.60.8024	Conical electrode	Ø 3 mm	24 CH	
25.60.9024	Ball electrode	Ø 3 mm	24 CH	
25.60.9027	Ball electrode	Ø 3 mm	27 CH	9
25.60.9124	Ball electrode	Ø 5 mm	24 CH	
25.60.9124 25.60.9127	Ball electrode Ball electrode	Ø 5 mm Ø 5 mm	24 CH 27 CH	6
				6
				6
25.60.9127	Ball electrode	Ø 5 mm	27 CH	
25.60.9127 25.60.1124	Ball electrode Roller electrode plain	Ø 5 mm Ø 3 mm	27 CH 24 CH	
25.60.9127 25.60.1124	Ball electrode Roller electrode plain	Ø 5 mm Ø 3 mm	27 CH 24 CH	
25.60.9127 25.60.1124	Ball electrode Roller electrode plain	Ø 5 mm Ø 3 mm	27 CH 24 CH	

Bipolar Saline Resection

Bipolar Resection of Prostate offers advantage that the current does not pass through larger area of patient's body. The current is returned through electrode itself. A patient plate is not required to be connected to patient's body.

Bipolar Resection must be done under SALINE solution only.

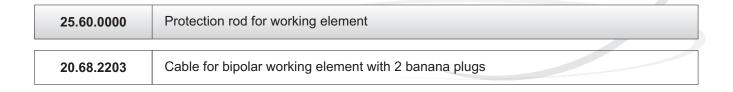
The risk of fluid overload is reduced by use of saline as it is more easily absorbed in body than Glycine. This reduces occurrence of TURP Syndrom.

High Power Bipolar Cutting Current Generators must be used for Saline Resection. The Generator used must be validated by Maxer to get the right results.

Principle of operation

- Electric current causes saline solution to heat & evaporate.
- The vapor created gets ionised due to current & converts to plasma
- The heat of ignited plasma cuts the tissue
- This results in lower thermal damage & better outcome for patient

Resectoscope Working Elements - Bipolar


For 4 mm Hysteroscope

25.60.0020B Working element 24/26 CH, passive cutting by spring action closed handle

25.60.0030B Working element 24/26 CH, active cutting by finger action closed handle

Electrodes for Resectoscope - Bipolar

25.60.1024B	Roller electrode serrated	Ø 3 mm	24 CH	
25.60.2024B	Roller electrode serrated	Ø 5 mm	24 CH	
25.60.3024B	Knife electrode		24 CH	
25.60.4024B	Loop electrode, straight		24 CH	
20.00.40245	200p olocatous, caraigin		24 011	
25.60.5024B	Loop electrode, angled for 30°	scopes	24 CH	
25.60.6024B	Loop electrode, angled, for 0° s	scopes	24 CH	
25.60.7024B	Vaporization electrode	Ø 3 mm	24 CH	
25.60.7124B	Vaporization electrode	Ø 5 mm	24 CH	

Electrodes for Resectoscope - Bipolar

25.60.9024B	Ball electrode	Ø 3 mm	24 CH	
25.60.9124B	Ball electrode	Ø 5 mm	24 CH	0

25.60.1124B	Roller electrode plain	Ø 3 mm 24 CH
25.60.1224B	Roller electrode plain	Ø 5 mm 24 CH

Mini Hysteroscopy System

For 2.9 mm Hysteroscope

High resolution scopes, Sapphire cover glass on both ends, Glass cone to collect light from F. O. Cable, Autoclavable

HD Version 2.9 mm

0° HD	12°HD	30°HD	Ø mm	Working length
15.10.3500	15.10.3512	15.10.3530	2.9	300 mm

Diagnostic & therapeutical applications

Medical indications:

Taking diagnostic biopsies with non-specific cytology

Surgical biopsies with probable suspected diagnosis of malignant tumor of the cervix uteri

Therapy of diseases of the cavum uteri such as polyposis uteri, uterus myomatosus (submucosal myoma)

Treatment of diseases located in the cervix uteri such as endocervical polyps (polyposis endocervicalis)

Synechiolysis (lysis of adhesions)

Curettages

Metroplasty (uterine intervention aimed at surgical removal of congenital anomalies of the uterus)

Therapy of Metropathia haemorrhagica Surgical corrections of deformities of the upper & lower uterus segment

Features & benefits:

Lowering the diameter from generally used 26 CH to only 16/18 CH helps avoid dilatation of the cervix uteri. This reduces surgery time & prevents harmful impairment to the tissue structure of the cervix uteri.

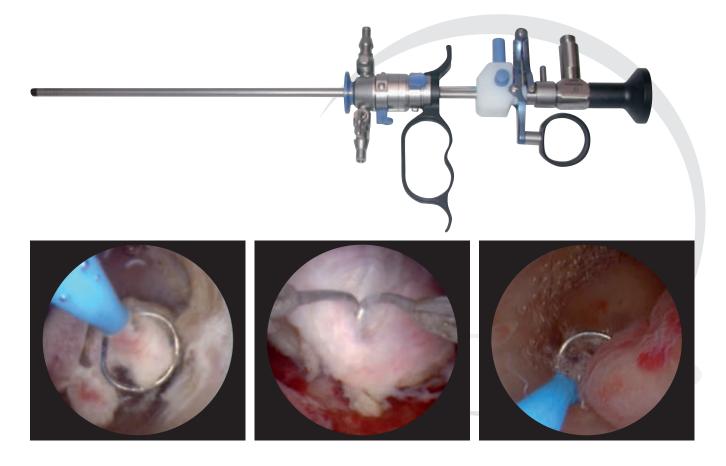
Facilitates hysteroscopic diagnostic procedures & surgical interventions when confined anatomical conditions are met such as constrictions of the cervix uteri or in the critical areas of the higher segments of the cavum uteri.

A more gentle & less burdening procedure especially in the endocervical passage which typically allows the avoidance of general anesthesia.

By reducing the diameter of the shaft, the risk of intra & postoperative complications is minimized

The technical design, including the option for continuous flushing, ensures a sufficient biopsy of tissue for diagnostically conclusive analysis.

The 16/18 CH Mini-Resectoscope with continuous flow & optional 5 CH working channel provides the possibility of a rapid & gentle endoscopic therapy for a wide range of endo-uterine diseases. By way of introducing miniature loops which are shaped ideally to the given anatomical proportions, the strain to female patients could be clearly reduced. The miniature loops are presently offered in two different patterns with & without high frequency current for coagulation. The loop without HF current is typically used for blunt preparation.

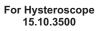

Mini Hysteroscopy System

For 2.9 mm Hysteroscope

Advantages of the Mini Hystero - Resectoscope

Maxer Mini Hystero-Resectoscope offers a multitude of options for non-invasive diagnostic & therapeutical Gynecology. Mini Hystero-Resectoscope system allows both, hysteroscopy & resectoscopy with reduced diameter of the shaft.

- Distal ceramic is placed at the outer tube
- Resectoscopy treatment to be used easily in outpatient care "EASY LOCKING" connecting system for innerouter sheath interface
- Easy Lock connecting system for sheath working element interface
- Electrode can be placed atop the telescope thus allowing a better view
- Processing of high sophisticated materials like titanium in the manufacture of the resectoscope
- Additional operating sheath available with 5 CH working channel
- Variety of HF & preparation electrodes are available
- Specially designed electrodes are essential to help lowering the risk for most gynecological complications
- · Optimized continuous flow rate for a much clearer endoscopic visibility



Resectoscope and accessories - Monopolar

For 2.9 mm Hysteroscope

Resectoscope System 16 CH

25.29.0029 Working element, passive, closed handle, with titanium hinge, for 16 CH sheath, Easy lock

25.29.0016EL	Continuous flow sheath, all around perforation 16 CH Rotatable, with inner & outer sheath, Easy lock, for 0°		
25.29.0017EL	Outer Sheath	25.29.0015EL	Inner Sheath
25.29.1600EL	Obturator for 16 CH continues flow resectoscopy sheath		

Electrodes for Resectoscope - Monopolar

For 2.9 mm Hysteroscope

Resectoscope System 16 CH

25.29.0010	HF loop electrode size 1, small, 90° angled for 0° telescope	
25.29.0011	HF loop electrode size 2, large, 90° angled for 0° telescope	
25.29.0012	HF ball electrode angled for 0° telescope	
25.29.0013	HF knife electrode 90° angled for 0° telescope	
25.29.0014	HF loop electrode straight for 0° telescope	
25.29.1010	J Hook preparation electrode, small, non HF	
25.29.1010 25.29.1011	J Hook preparation electrode, small, non HF J Hook preparation electrode, medium, non HF	
25.29.1011	J Hook preparation electrode, medium, non HF	

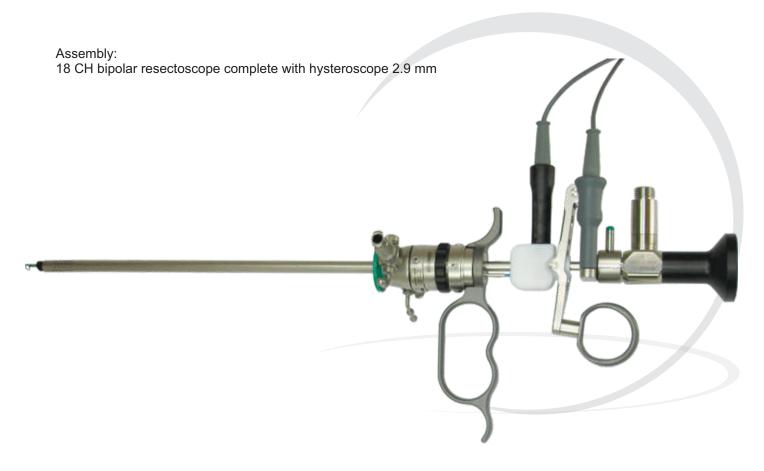
Resectoscope and accessories

Monopolar and Bipolar for 2.9 mm Hysteroscope

Resectoscope System 18 CH

25.29.1029EL	Working element MONOPOLAR passive 18.5 CH closed, Easy lock
25.29.1029BEL	Working element BIPOLAR passive 18.5 CH closed, Easy lock

25.29.1016EL	Resectoscopy countinuous flow sheath 18 CH rotatable, 2 stop cock, Easy lock, 30°			
25.29.1017EL	Outer sheath 25.29.1015EL Inner sheath			
25.29.1800EL	Obturator for resectoscopy sheath 18 CH			



Electrodes for Resectoscope

For 2.9 mm Hysteroscope

Monopolar & Bipolar

25.29.2011	Loop electrode, angled 17.5 CH for 2.9 mm, 30° scope	
25.29.2012	Ball electrode 17.5 CH	
25.29.2013	Knife electrode 17.5 CH	
25.29.2014	Loop electrode, straight 17.5 CH for 2.9 mm, 0° scope	<i>-</i>

Diagnostic Sheath

For 2.9 mm Hysteroscope

For Office Hysteroscopy

Diagnostic sheath with 1 rotatable stopcocks

Art. No.	Diameter	Working Length	For Telescopes Ø 2.9 mm
25.31.2931	4 mm	270 mm	0°
25.31.2932	4 mm	270 mm	30°

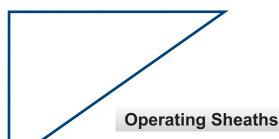
Diagnostic sheath inner with 2 rigid stopcocks

Art. No.	Diameter	Working Length	For Telescopes Ø 2.9 mm
25.31.2911	4 mm	260 mm	0°
25.31.2912	4 mm	267 mm	30°

25.31.2910	Continues flow outer sheath Outer Ø 5 mm, WL 240 mm
------------	---

Obturator

Continuous Flow Operating Sheaths


For 2.9 mm Hysteroscope

Continuous flow operating sheaths with 2 fixed stopcocks & 1 instrument port 5 CH & separate irrigation channel

25.43.2912 Continuous flow outer sheath Ø 4.3 mm with 1 stopcock, Oval, WL 192 mm

For 2.9 mm Hysteroscope

Operating sheaths with 2 fixed stopcocks & 1 instrument port 5 CH continuous flow Irrigation channel combined with instrument channel.

Art. No.	Outside Diameter	Working Length	For Telescopes Ø 2.9 mm
25.42.2942	5.5 mm	210 mm	12°/30°, 300 mm

Continuous flow operating sheaths with 2 rotating stopcocks & 1 instrument port 5 CH & separate irrigation channel

Art. No.	Outside Diameter	Working Length	For Telescopes Ø 2.9 mm
25.41.2921	6.0 mm	200 mm	0°, 300 mm
25.41.2922	6.0 mm	200 mm	30°, 300 mm

Thin Resectoscope

For 2.9 mm Hysteroscope, 22/19 CH

25.61.0020	Working elements, passive cutting by spring action closed handle for 22/19 CH Thin Resectoscope
25.61.0030	Working elements, active cutting by spring action closed handle for 22/19 CH Thin Resectoscope

25.61.0032EL	Resectoscope sheath for continuous irrigation, rotatable, 22/19 CH, with standard obturator, Complete	
25.61.0022EL	Outer sheath only, 22 CH	
25.61.0019EL	Inner sheath with ceramic insulation only, 19 CH	

25.61.1019	Standard Obturator 19 CH
25.61.2019	Visual Obturator

25.50.0004	Monopolar cable for working element 4 mm plug
------------	---

Electrode for Thin Resectoscope

Resectoscope, for 2.9mm, 22/19 CH

25.61.1011	Vaporisation roller electrode Ø 3mm	A The second sec
27.04.0044		
25.61.2011	Straight electrode	
25.61.3011	Knife electrode	
25.61.5011	Loop electrode, angled, for 30°	
	1	
25.61.7011	Roller electrode	9
25.61.9011	Ballpoint electrode 3 mm	G
23.01.3011	Bailpoint dicotrodo o mini	

Mini Hysteroscopy System

For 2 mm Hysteroscope

Semi-flexible design using 40,000 pixel fiber bundle for HD imaging. Resistant to bending. Autoclavable. Easy insertion.

High Definition Version

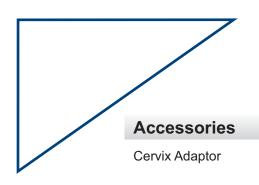
0°HD	O 30° HD Ø mm		Working length
15.10.2000	-	2 mm	300 mm

HD = High Definition scopes offer better optical clarity, brightness & depth of focus

Diagnostic Sheaths

For 2 mm Hysteroscope

Diagnostic inner sheath with 2 rigid stopcocks


Art. No.	Diameter	Working length	For telescopes Ø 2.0 mm
25.31.2011	2.9 mm	218 mm	0°

		1
25.31.2010	Continuous flow Outer sheath, Ø 3.7, WL 200 mm	
		1

Obturator

25.31.2013	Obturator for diagnostic sheath 25.31.2011 & 25.31.2012, 25.31.2016, 25.31.2018
------------	---

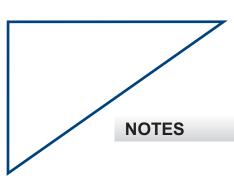
20.74.0085	Cervix adaptor for fixation of the portio Ø 28 mm, for the introduction of the sheaths up to Ø 8.5 mm	
20.74.0034	For fixation of the portio Ø 34 mm	

20.75.0024	Adaptor for pertubation with small suction cap 34 mm	
20.75.0028	With medium suction cap 28 mm	
20.75.0032	0.75.0032 With large suction cap 32 mm	

Accessories

Urethral Bougies with channel 5 CH

Groundi Bougloo Mar orianilor o Gri		
Art. No.	Ø CH	
20.90.0090	9 CH	
20.90.0105	10.5 CH	
20.90.0120	12 CH	
20.90.0135	13.5 CH	
20.90.0150	15 CH	
20.90.0165	16.5 CH	
20.90.0180	18 CH	
20.90.0195	19.5 CH	
20.90.0210	21 CH	
20.90.0225	22.5 CH	
20.90.0240	24 CH	
20.90.0255	25.5 CH	
20.90.0270	27 CH	
20.90.0285	28.5 CH	


Dilatator, Urethro Meatus, with steps

Art. No.	Ø CH
20.90.1016	10.5 -16.5 CH
20.90.1622	16.5 - 22.5 CH
20.90.2228	22.5 - 28.5 CH

Bougies for female Urethra

Art. No.	Ø CH
20.90.0918	9-12-15-18 CH
20.90.2130	21-24-27-30 CH

NOTES HYSTEROSCOPY	NOTES	YSTEROSCOPY

UNITS

LAPAROSCOPY

UROLOGY

HYSTEROSCOPY

ARTHROSCOPY

ENT

PEDIATRIC

SPINE ENDOSCOPY

Distributed by:

Maxer Medizintechnik GmbH

Untere Hauptstr. 34/1 78573 Wurmlingen

Germany

Registered Office: Vogesenstr.17

78549 Spaichingen

Germany

Email: info@maxerendoscopy.com Website: www.maxerendoscopy.com